Faster Pedestrian Recognition Using Deformable Part Models
نویسندگان
چکیده
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations. Keywords—Autonomous vehicles, deformable part model, dpm, pedestrian recognition.
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملTarget Detection and Pedestrian Recognition in Infrared Images
By improving the local contrast between targets and background in the static infrared images, a simple and effective background model is proposed to detect targets. At the same time, a novel learning algorithm is presented for training a discriminatively trained, part-based model with only positives images, for pedestrian recognition. The background models are constructed based on the static in...
متن کاملUsing Aspect Graphs to Control the Recovery and Tracking of Deformable Models
Active or deformable models have emerged as a popular modeling paradigm in computer vision. These models have the exibility to adapt themselves to the image data, ooering the potential for both generic object recognition and non-rigid object tracking. Because these active models are underconstrained, however, deformable shape recovery often requires manual segmentation or good model initializat...
متن کاملRapid Deformable Object Detection using Dual-Tree Branch-and-Bound
In this work we use Branch-and-Bound (BB) to efficiently detect objects with deformable part models. Instead of evaluating the classifier score exhaustively over image locations and scales, we use BB to focus on promising image locations. The core problem is to compute bounds that accommodate part deformations; for this we adapt the Dual Trees data structure [7] to our problem. We evaluate our ...
متن کاملHigh Performance Camera-based Modules for Autonomous Vehicles
Vision based modules are essential to realize artificial intelligence robotics, smart traffic and driverless cars. Our research work focus on traffic sign recognition and object detection in context of vehicle and pedestrian detection. Several detection techniques are based on deformable part models (DPMs) and convolutional neural network (CNN) for its foreseen precision. We proposed multiple a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016